
Cost Effective Software Engineering using Program
Slicing Techniques

1Muhammad Saleem
Department of Computer Science and

Engineering, Hanyang University
Ansan Campus, S. Korea

0082-10-25146291

engr_saleemwazir@yahoo.com

2Rasheed Hussain
 Department of Computer Science

and Engineering, Hanyang University
Ansan Campus, S. Korea

0082-10-23492659
rasheed1984@gmail.com

4Shaikh Mohsin

Department of Computer Science and
Engineering, Hanyang University

Ansan Campus, S. Korea

silent_touch2210@yahoo.com

3Yasir Ismail
 Department of Electrical and

Electronics Engineering, Hanyang
University Ansan Campus, S. Korea

0082-10-80626291

marwat_telecomm@yahoo.com

ABSTRACT
Software Development is a complex and multidimensional task.
Often software development faces serious problems of meeting
key constraints of cost and time. Big projects which are well
planned and analyzed, can end up in a disaster because of
mismanagement in cost estimation and time allocation.
Program slicing has unique importance in addressing the issues of
cost and time. It is broadly applicable static program analysis
technique which provides mechanism to analyze and understand
the program behavior for further restructuring and
refinement. In this paper, authors investigate the relationship
between program slicing and software development phases on the
basis of empirical studies conducted in the past and also establish
the fact that how program slicing can be helpful in making
software system cost and time effective.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management– software cost and
time.

General Terms
Management, Measurement, Performance, Experimentation

Keywords
Program slicing, software cost and time, software development
phases, program code

"Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

ICIS 2009, November 24-26, 2009 Seoul, Korea
Copyright © 2009 ACM 978-1-60558-710-3/09/11... $10.00"

1. INTRODUCTION
In the modern era of technological revolution, software
development has emerged as backbone of business and
operational world. Software systems serve as economical tools for
multinational companies, infrastructural operations, and
government dealings.

However, 40 years of research and innovation in software
development, estimation of software development cost and time
remain one of the most vexing issues in software engineering.
Previously, Quantitative Software Management and Software
Project Management have explored different approaches of safe
and simple software cost analysis. But still an effective solution
was prime requirement.

According to study, Testing, Debugging, Maintenance, Re-
Engineering consumes more than half of labor and cost of overall
software budget and resources. Program slicing has been
recognized as an economical and efficient mechanism to optimize
above mentioned software development levels [1]. Program
slicing is a technique whose application is aimed at extracting out
program parts that may not have computational influence on
other statements. Purposefully program slicing focuses to
identify semantically meaningful portion of a program on the
basis of slicing criterion. It also works as program analysis tool
by developing subset of inter-relevant large code program which
is scattered through out the program. Consequently it helps
software engineers to carry out all calculated operations on
domain of interested program code.

Ongoing research of almost 25 years has evaluated and evolved
many aspects of program slicing. From technical modification of
large programs to code processing application Program Slicing ,
has emerged as vital component in restructuring and refinement of
program code [2].The vital application of program slicing is
recognized in program debugging, testing, software maintenance,
safety, re- engineering [3].

In this paper, we have redefined program slicing
application in modern software engineering phases. Previously

768

different approaches adopted in optimization and analysis of
program code. But program slicing is far better choice than
conventional techniques in terms of saving cost and time. We
have carried out an analysis of program slicing effectiveness on
the basis of empirical studies conducted in past [4],
experimental results [5] and theoretical conclusions.

This paper is further organized as follow. Section 2
briefly explain overview of the program slicing, Section 3
describes application of program slicing in software
debugging, Section 4 evaluates relationship between program
slicing and testing on the basis of cost and labor consumption,
section 5 shows maintenance phase redefined with program
slicing applications in empirical and economical terms. Two
other aspects of Maintenance are also elaborated.

2. PROGRAM SLICING OVERVIEW
Program slicing is a technique for simplifying programs by
eliminating those parts of the program which are not of interest.
The main aim of program slicing is to identify and extract relevant
parts of a software program from a more complicated code. A
slice is a reduced program which preserves the original program’s
behavior for a given set of variables at a chosen point of interest,
referred to as slicing criterion. Typically, slicing criterion consists
of pair (line no, variable).

 The process of program slicing is especially important to software
engineering efforts, as it allows the software engineer to find the
way through complicated strings of code in order to access the
source code that actually drives the application. Being able to
extract these subprograms and view the source code makes it
possible to identify a wide range of potential bugs and thus make
the software run with more efficiency [8]. Figure 1, 2 shows an
example of a simple slicing.

Original Program

1. a = 3;
2. b = a + 2;
3. c = 5 + a;
4.

Figure 1. Original Program for slicing

liced Program

1. a = 4;
2.
3. c = 5 + a;
4.
Slice wrt. (4; {c})

Figure 2 . Sliced Program
The program is sliced at with line 4 while variable “c” is used as
slicing criterion. There are two basic methods for computing
slices.

2.1 Static Slicing
 In static slicing only statically available information is used for
computing slices, hence called static slicing. Based on the original

definition of Weiser, informally, a static program slice S consists
of all statements in program P that may affect the value of variable
v at some point p. The slice is defined for a slicing criterion
C=(x,V), where x is a statement in program P and V is a subset of
variables in P. A static slice includes all the statements that affect
variable v for a set of all possible inputs at the point of interest
(i.e., at the statement x). Static slices are computed by finding
consecutive sets of indirectly relevant statements, according to
data and control dependencies. Figure 3, 4 shows an example of
static slicing

1. int i;
Original Program

2. int sum = 0;
3. int product = 1;
4. for(i = 0; i < N; ++i) {
5. sum = sum + i;
6. product = product *i;
7. }
8. write(sum);
9. write(product);

Figure 3. Original Program
 This new program is a valid slicing of the above program with
respect to the criterion (write(sum),{sum}):

 Figure 4 . Sliced Program

2.2 Dynamic Slicing
In the case of dynamic program slicing, only the dependences that
occur in a specific execution of the program are taken into
account. A dynamic slicing criterion specifies the input, and
distinguishes between different occurrences of a statement in the
execution history; typically, it consists of triple (input, occurrence
of a statement, variable).

An alternative view of the difference between static and dynamic
slicing is that dynamic slicing assumes a fixed input for a
program, whereas static slicing does not make assumptions
regarding the input. Figure 5 shows the difference between static
and dynamic slicing.

Sliced Program

1. int i;
2. int sum = 0;
3. for(i = 0; i < N; ++i) {
4. sum = sum + i;
5. }
6. write(sum);

769

Static Slicing

Function f(N)
1: 1: z = 0
2: a = 0
3: b = 2
4: p = &b
5: For i = 1 to N
 {
6: If (i % 2 = = 0)
 {
7: p = &a
 }
8: a = a + 1
9: z = 2 * (*p)
 }
10: Print(z)

Dynamic Slicing

For input N=1
1: z = 0 [z=0]
2: a = 0 [a=0]
3: b = 2 [b=2]
4: p = &b [p=&b]
5: For i = 1 to N [i=1]
 {
6: If (i % 2 = = 0) [false]
8: a = a + 1 [a=1]
9: z = 2 * (*p) [z=4]
 }
10: Print(z) [z=4]

 Figure 5. Dynamic Slicing
So the result of the static slicing Static Slice (<10, z>) = {1, 2, 3,
4, 7, 8, 9, 10} while Dynamic Slice (<input = 1, variable = z,
execution point = 10>) = {3, 4, 9, 10}

3. DEBUGGING AND PROGRAM ANALYSIS
Debugging is considered as major issue in software
evolution. Debugging large and complex software systems
evolved, requires a lot of effort since it is very difficult to localize
and identify the faults. Conventional debugging process
involves allot of overhead. Consequently software faults are not
completely removed. This is because debugging is subject to
software’s which are often modified to reflect new functionality.
Reducing the effort of debugging process is an important measure
in efficient evolution of software.

Program slicing is very sound and promising approach to localize
faults efficiently. Detection of faults in software product was
initial motivation of program slicing. In debugging, software
engineers focus their interest in specific execution of program.
Program Slicing assist software engineers to develop
comprehensive analyzer and focus their attention on those
statements that contribute to a fault of commission.

The general steps for debugging are as follow;

 First translate the external symptoms of the program failure into
the corresponding internal symptoms in terms of data or control
problems in the program. After that, one of the internal symptoms
is selected slicing criterion for dynamic slicing. Using this
criterion, a dynamic slice is obtained containing code that caused
failure. After examining the dynamic slice, a statement is selected
at which to examine the program state, and the program state is
restored to the state when the control last reached that statement.
Now the values of some variables are observed in the restored
state to find fault. If search is not successful then user may choose
to further examine the restored state, guess a new fault, or select a
new slicing criterion and repeat the cycle until the fault is
localized.

 Experimental results and analysis of Kusumutu et al. [9] are
shown in tables 1, 2. Table 1 shows the size of the program and of
the slice obtained by the typical slicing criterion for failure of the

program. Also, the tables include the distance (number of lines)
from the statement at which the incorrect values are printed, to
that at which the fault is localized. P1 to P8 are different
programs for which various faults (F1 to F7) are localized.

Table 1. Size of program and slice

 P1 P2 P3 P4 P5 P6 P7 P8 Avg
LOC

427

194

110

432

194

111

428

196

120

428

196

5

429

199

131

429

199

21

434

202

47

434

211

16

430

199

_

Slice
Size
Distance

From the table, the average ratios of the slice to the entire
program are 46%. The extracted slice in each trial was reasonably
small compared to the entire program.

Table 2 show the data about the time (in minutes) required to
localize each of the faults in each trial.

Table 2. Fault localization results with and without slicing

Without
Slicing

try F1 F2 F3 F4 F5 F6 F7 total

1

2

3

17

28

23

10

18

12

26

36

28

27

17

32

35

25

41

17

23

17

7

16

7

139

163

160

With
Slicing

1

2

3

38

11

14

6

8

14

27

10

19

18

16

36

20

16

10

20

13

5

8

7

17

119

88

116

The average time to localize all seven problems without using
program slicing is 154 minutes while it is 107.66 minutes if we
use program slicing.

Practically program slicing optimizes code up to 25% of code
analyzed by conventional tools. Notable time difference was also
observed.

4. SOFTWARE TESTING
Testing is an important phase in process of software
development and Re-engineering. Testing insures error free
software. Efficiency and Accuracy of test –cases are subject
certain issues. Testing consumes at least half of labor
expended to produce a working program. Power and utility of
program slicing comes in assisting software engineers to adopt
unique mechanism of testing. The process of negotiating a
software testing budget can be complex task. Particularly
automation of the testing process should be beneficial because the
typical testing process is human–intensive activity and generally
costly, time consuming, error prone and inadequately done [6].
Slicing a portion of program and extracting scattered statements
which are relevant to particularly added or new functionality
would help make analysis and catch bugs. Influential
application of program slicing was observed in Regression
Testing, and Incremental Regression Testing which manages re-

770

testing of program after a modification made into it. Goal is to
insure that bug fixes and new functionality do not adversely affect
original program semantics or syntax. Testing carried out using
program slicing techniques observed following differences with
conventional testing approaches as show in table 3.

Table 3

Comparative analysis of average testing and Program
slicing based testing

C program
segment

413 tests carried out.

14,500 LOC Average test
execution

Execution using
program slicing
mechanism

6500 basic blocks 11% 71%

183 functions 26% 88%

Above calculated results suggests that testing can be regarded as
an investment for software project. Program slicing with its
application can enable software to generate revenue [7].

According to hypothetical case study, cost of quality technique to
analyze return on the testing is carried out. Analysis is further
formatted in table 4.

Table 4. Testing Investment Analysis

According to another experimental study conducted by David
Brinkley, and Mark Harman , over 1000,000 lines of code was
put to testing using program slicing. Impact of computation time
in that experiment illustrates 71% reduction in run-time and 64%
reduction in the memory usage.

Brinkley further described an algorithmic approach to reduce the
cost of regression testing using program slicing. (i) Reducing the
number of test that must be re-run (ii) Decreasing size of the
program that would be subject to some test. This is accomplished
with slicing technology and its powerful impact of lines of code.

5. SOFTWARE MAINTANENCE
Software maintenance is phase of software engineering in which
necessary modification into software product is made to remove
faults, to improve its efficiency and performance, to enable the
product as adaptable to changing environmental Factors.

Over the years software engineers have realized that maintenance
costs are important part of over all software cost and crucial to
success of software project. According the software development

giants, software maintenance consumes 67% of software life-
cycle cost.

 Program slicing is applied to software maintenance problem
by extending the notion of program slice to a decomposition
slice. Decomposition slice captures all computation on a given
variable or criterion. Thus program slicing facilitates the
maintainers with a technique of identifying those statements
which are subject to modification or what are not. Since slices
produced are semantically consistent and can be merged back into
original program after some operation performed on them.

We further explain two important aspects of software
maintenance: comprehension and software re-engineering with
notion of program slicing application into them.

5.1 Software Re-Engineering
 Software Re-engineering is process of constantly updating and
renovating business-critical software systems. This is hardware
level aspect of Maintenance which comes in practice because of
business requirement change, technological infrastructure and
other external factors. Re-engineering is costly process. Some
systems are beyond repair. In such a situation, a re-engineering
process needs to be undertaken. Even where systems are not
beyond repair, it is often useful to be able to extract components
of the systems for reuse and re-structuring. Slicing has been used
as a component in strategies for restructuring [7] Re-engineering.
This will optimize the re-engineering process and will reduce cost
and time overheads by focusing on particular slice for change or
innovation.

5.2 Software Comprehension
To maintain the quality of software high and reliable depends on
understanding of system code by experienced software
professionals. Comprehension is process of understanding
semantics and syntax of program code. This is vital part of
maintenance process which can lead to develop effective software
matrices. Comprehension can allow engineering to make an
assessment of human performance in software development
process and improve the understandability of code.
Comprehension is primary phase of software maintenance which
cost about 50% to 90% of the overall maintenance budget.
Complexity of comprehension arises when dealing with large
code. Large-scale study of 43 c- programs was conducted to
reflect difference of code understanding using program
slicing. Table 5 is data collection of those c-programs.

Testing Manual
Testing

Using Program
Slicing

Fix-Bugs , Internal
Failure investment

3500$ 500$

Return on
Investment

350% 445%

771

Program LOC
without
comments
and blank
lines

No of
lines
after
applying
slicing

Percent
reductio
n in No
of lines

Affect of
comprehension
assisted by
slicing on over
all software
budget, time

a2ps 40,222 12,348 30.7% 15%
acct-6.3 6,764 501 7.4% 3.6%
barcode 3,975 1,212 30.5% 14.9%
bc 11,173 5,452 48.8% 23.9%
byacc 5,501 996 18.1% 8.9%
cadp 10,620 828 7.8% 3.8%
compress 1,431 356 24.9% 12.2%
copia 1,112 252 22.7% 11.1%
csurf-
pkgs

38,507 6,007 15.6% 7.6%

ctags 14,298 5,948 41.6% 20.4%
cvs 67,828 31,404 46.3% 22.7%
diffutils 12,705 2,871 22.6% 11.1%
ed 9,046 4,822 53.3% 26.1%
empire 48,800 16,104 33.0% 16.2%
EPWIC-1

5,719 646 11.3% 5.5%

espresso 21,780 6,708 30.8% 15.1%
findutils 11,843 3,257 27.5% 13.5%
flex2-4-7 10,654 2,642 24.8% 12.2%
flex2-5-4 15,283 3,194 20.9% 10.2%
ftpd 15,361 5,361 34.9% 17.1%
gcc.cpp 5,731 2,625 45.8% 22.4%
gnubg-
0.0

6,988 1,558 22.3% 10.9%

Table 5

Data suggests that with decrease in lines of code obtained there
was consequent decrease in budget of overall software. Such
enormous percentage decrease in code analysis allows software
engineers to re-structure and refine the program feasible enough
for program slicing. This sample data is evidence of
computational effect produced by program slicing in code
processing theory.

6. CONCLUSION
The prime objective of our work is to analyze the experimental
results, empirical studies, hypothetical calculation based on
program slicing. We have established the fact that program slicing
mechanism can be standardized to be vital part in software
matrices and economics. In future we look forward to focus on
more experimental results to evaluate program slicing importance
and role.

7. ACKNOWLEDGMENTS
This research work is sponsored by ‘Higher Education
Commission (HEC), Govt. Of Pakistan’ under the scholarship
program titled: MS Level Training in Korean
Universities/Industry.

8. REFERENCES
[1] Mark Weisier. Program Slicing IEEE Transaction on

software engineering, 1984.
[2] Baowen Xu ,Ju Qian Xi and Xiaofang Zhang . A Brief

Survey of Program Slicing , ACMSIGSOFT Software
Engineering Notes, 2005

[3] David Binkley and Mark Harman. Emprical Study of
Optimization Techniques, Loyola College inMarylang, 1997

[4] O. Cetinkaya and D. Cetinkaya. An Empirical Study of Static
Program Slice size , ACM Transaction on Software
Engineering and methodology (TOSEM)

[5] Takashi Ishio and Shinji Kusumoto. Program Slicing Tool
for Effective Software Evolution Using Aspect-Oriented
Technique, Proceedings of the 6th International workshop on
Principles of Software Evolution, 2003.

[6] David Binkely. Application of Program Slicing to Regression
Testing, Information and Software Technology Issue on
Program Slicing, 1999.

[7] A. Fujioka, T. Okamoto, and K. Ohta. Investing in Software
Testing , Australia, pp. 244-251, 1992

[8] http://www.wisegeek.com/what-is-program-slicing.htm
[9] Shingi kusumoto, Akira. Experimental Evaluation of

Program Slicing for Fault Localization, Empirical Software
Engineering, volume 7, pages 49-76, 2002.

772

